EXISTENCE OF A o FINITE INVARIANT
MEASURE FOR A MARKOV PROCESS
ON A LOCALLY COMPACT SPACE(")

BY
S. R. FOGUEL

ABSTRACT

A o finite invariant measure is found, for a Markov process, on a locally
compact space, which maps continuous functions to continuous functions.

1. Notation. Let X be a locally compact Hausdorff space. Let X denote its Baire

sets. Let P be a Markov transition function on (X, X) i.e.;
1.1 For each xe X,P(x; +) is a probability measure on X and for each

and AeX, P(- ;A) is T measurable.
The transition function defines an operator on bounded measurable functions

and on measures by

12 ®NE - [10) P,

1.3 (uP)(4) = |P(x, A) u(dx).
Let us denote

1.4 (T.H(x) = a(x)f(x).

1.5 T, =T, where ¢ =1,.

2. The operator T,PT,. Let A be the complements of the compact set B.
Throughout the paper we shall assume

AssumpTioN 2.1. (T,PT)'1(x)—>O0,,, for every xeX.

REMARK. Assumption 2.1. is used here instead of the recurrence condition

of Harris [1].
LemMa 1. Under Assumption 2.1.
(PT)"(x)y0 = 0 for every xeX.
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Proof. PT, = T,PT, + T,PT,, where (TzPT,)* = (T,PT)(T,PT,) = O.
Hence (PT)" =(T,PT)" +(TeP)(T,PT)" 'l it is easy to see that if
(T,PT,"1 tends to zero so does (TpP)(T,PT,)"; note that (T,PT,)**'1
=(T,PTY[(T,PTY1] £ (T,PTY1.

LeMMmA 2. Under Assumption 2.1.
Y (P"1p)(x) >0 for every xeX.
n=1

Proof. Assume, to the contrary, that for some x, (P"15)(x,) =0 n =1,2,...,
Now (PT,"l =[P(1 — Tg)]"1 which is equal to 1 plus terms of the form
[T P(Tp)*]P1p where ¢; is either zero or one. Thus at x, each of these terms is
smaller than (P*15)(xo) =0 where k < n. Thus (PT,)"1(x,) = 1 which violates
Lemma 1.

ReMARK. The conclusion of Lemma 2 is weaker than the assumption used
by Nelson [2, Theorem 2.1.]. If Assumption 2.1. does not hold then (T,PT,)"1
is a monotonically decreasing sequence whose limit g satisfies T,PT,g = g. Con-
versely if (T,PT,)"1 - 0 then no such invariant function exists:

| g(x)| = lim |(T,PT,)" g(x) | < sup|e(y)| lim (T,PT,(x) =0

Let X be the nonnegative integers and Py =1 P,y =1-6, P,,+, =96, where
0<d,<1and X 8, < . (This example is given in [2, p. 674]).
Let B = {0}. Then

00,0 -
T,PT, = (006, -

and f, =(8,---6,)"! is an invariant function for T,PT,.
Thus Lemma 2 may be true and Assumption 2.1. false.

3. The construction of the invariant measure. Using the same notation as 1.
Let B be a continuous function with:
31. 0<B<1,B=1o0nB, =0 outside B where B is compact.

Put @ = 1 — B then « is continuous and
3.2 0sa=z1l a=s1,.

Thus T, f = 1,f for every positive function f and by Lemma 1.
33. (PT)"(X)yn0 = O at every point x.

Following Harris [1] let us define
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3.4, Py = X (PT)'PT,
n=0
where Py is an operator on bounded measurable functions defined on B.
Throughout the rest of this paper we shall assume
3.5. Assumption. If f is continuous so is Pf.
The operator Py has the following properties

3.6. If f is continuous then so is Pyf.

3.7. If f20 then Pyf 2 0.

38. Pylz = )N: (PT)"PB = ﬁ (PT)Y(1 — Po)
n=0

n=0
= P1—-(PTY)"'1 <1
Also if f = 0 then
3.9. Py.if 2 Pyf.

LEMMA 3.  Assume Assumptions 2.1 and 3.5. The sequence of operators
Py on C(B) converges uniformly. Let us denote its limit by P,. Then:

(@) If f is continuous on B then so is P f.

(b) Iff=0 then P f20.

(c) P,1 =1,

Proof. Let us prove (c) first: Pl =limPyl =1~ lim(PT)**'1 =1
by 3.3. Now PT,1 < 1 hence (PT)"1 is monotonically decreasing to zero on B
hence converges uniformly there. Thus if 0 < f < M then

N+K

> (PLYPT,f |

n=N+1

M ”PN"'K 1 '—PNIHN-ooo e d O.
This and 3.5 prove (a) and (b) follows from 3-6.

[ Py+xf— Puf|

(1A

COROLLARY. There exists a probability measure u, on B, with uP, =p.

Proof. This is a standard argument: The collection of all probability measures,
on B is a bounded set of functionals on C(B) which is weakly closed and convex
and invariant under P, hence this set contains a fixed point.

Following Harris [1] let us define

(3.10. 1= % W(PT)".
n=0
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THEOREM. Assume 2.1. and 3.5. The measure A is ¢ finite, invariant under P
and agrees with y on B (and thus not trivial).

Proof. Let us first show that A is ¢ finite Let
H={fifz20and (4f) = ffd}.< ©}.

Let us show that P*fe H for every k > 1.
Now if k =1

(X WPTY", PPy =< X wPT), 1-(PT)1) =<{pu,1) =1.
Assume P*SeH then
(Z W(PTY,P**'By = (T WPT)", PT[P*B])
+ (X W(PTy, PT[P*6])
< (X WPTY*L P8y + M X u(PT)", PT;1)

where M = sup(P*8)(»).
The first term is finite by the induction hypothesis and the second term is
MY (PT)y, PB) =M. Thus A is o finite on

Ql {x:(P*B)(x) >0} kL=J1 {x:(P*1) (%) > 0}

by 3.1 and by Lemma 2 A is o finite on all of X.
Now if f is supported by B then (PTy'f =0 n =1 2,--- and {A,f) = {u,f>.
Finally

AP = ¥ W(PT)yP = X u(PT)'PT, + Zu(PT)'PT,
= A—p+ X W(PT)PT,

but u = X u(PT,y'PT; hence AP = A.
REMARK Any compact set is covered by a finite union of sets of the form
{x:(PB)(x) > 1/n} and thus A is finite on compact sets.
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