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ABSTRACT 

A o finite invariant measure is found, for a Markov process, on a locally 
compact space, which maps continuous functions to continuous functions. 

1. Notation. Let X be a locally compact  Hausdorff  space. Let ~ denote its Baire 

sets. Let P be a Markov transition function on (X, ~ )  i.e.; 
1.1 For each x ~ X , P ( x ;  .) is a probability measure on 7, and for each 

and A~Y,, P ( .  ;A) is Y, measurable. 
The transition function defines an operator on bounded measurable functions 

and on measures by 

1.2 

1.3 

Let us denote 

(P f )  (x) = f f ( y )  P(x, dy). 

(liP) (A) = fP(x ,  A) l~(dx). 

1.4 ( T j ) ( x )  = ~(x)f(x). 

1.5 TA = T, where ~ = 1,4. 

2. The operator TxPTx. Let A be the complements of  the compact  set B.  
Throughout  the paper  we shall assume 

ASSUMPTION 2.1. (TxPTA)"I(x) ~ 0.-.oo for every x ~ X .  
R~MARIC. Assumption 2.1. is used here instead of the recurrence condition 

of  Harris [1]. 

LEMMA I. Under Assumption 2.1. 

(PTA)'I(x).-~-*O for every x e X .  
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Proof. PTA = TAPTA + TBPTa, where (TBPT, O 2 = (TaPT, O(TBPTa) = O. 
Hence (PTA)nl =(T,~PT, O~I +(TnP)(TaPTa)~-I1 it is easy to see that if 
(TaPTa)nl tends to zero so does (TsP)(TaPTA)*I; note that (TAPT,4)~+q 
=(TAPTA)n1"(TAPTa)I] <= (TAPTa)nl. 

LEMMA 2. Under Assumption 2.1. 

o o  

(P~IB)(x) > 0 for every x e X .  
n = l  

Proof. Assume, to the contrary, that for some Xo (P'ls)(Xo) = 0  n = 1 ,2 , . . . .  
Now (PTA)~I = [ P ( 1 -  TB)]*I which is equal to 1 plus terms of  the form 
1.[[ P(TB)~']P1B where el is either zero or one. Thus at x o each of these terms is 

smaller than (/~ls)(xo) = 0 where k < n. Thus (PTA)'I(xo) = 1 which violates 

Lemma 1. 
P,~MARK. The conclusion of  Lemma 2 is weaker than the assumption used 

by Nelson [2, Theorem 2.1.]. If  Assumption 2.1. does not hold then (TAPTA)~I 
is a monotonically decreasing sequence whose limit g satisfies TaPTAg = g. Con- 
versely if (TAPTA)*I--* 0 then no such invariant function exists: 

I g(x)l -- lim I(TAPTA)" g(x) [ = sup I g(y) [ lira (TAPTa)"I(x) = 0 
n,-~ o3 

Let X be the nonnegative integers and Pot = 1 Pno = 1 - 6, P. .+I  = 6. 
0 < 6n < 1 and ~ 6,, < oo. (This example is given in 1"2, p. 674]). 

Let B = {0}. Then 

where 

TaPT A = 0 ~2 "'" 

and fn = (61 "" fin) -1 is an invariant function for TAPTA. 
Thus Lemma 2 may be true and Assumption 2.1. false. 

3. The construction of the invariant measure. Using the same notation as 1. 

Let fl be a continuous function with: 
3.1. 0 < f l < l , f l = l  o n B ,  f l = 0 o u t s i d e ~ w h e r e B i s c o m p a c t .  
Put ~ = 1 - ~ then ~ is continuous and 

3.2. 0 < ~ < 1  ~ <  1,t. 

Thus Taf  ~_ 1 J  for every positive function f and by Lemma 1. 

3.3. (PT~)nl(x)n_,~ -~ 0 at every point x.  

Following Harris [1] let us define 
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N 

3.4. PN = • (PT~)nPT# 
n = O  

where PN is an operator on bounded measurable functions defined on B. 

Throughout the rest of  this paper we shall assume 

3.5. Assumption. I f  f is continuous so is PC. 

The operator PN has the following properties 

3.6. I f  f is continuous then so is PNf. 

3.7. I f  f >  0 then PNf > O. 

N A 

3.8. PNI~ = E (PT~)"Pfl = ~, (PT,)n(1- Pa) 
n = O  n = O  

= P 1 -  (PT~)N+ll < 1 

Also if f > 0 then 

3.9. VN+~f>_P~f. 

LEMMA 3. Assume Assumptions 2.1 and 3.5. The sequence of operators 
PN on C(B) converges uniformly. Let us denote its limit by Poo. Then: 

(a) I f  f is continuous on B then so is P~f .  
(b) I f  f >= 0 then Poof >- O. 
(c) Pool = 1. 

Proof. Let us prove (c) first: Pool =l imPN1 = l - l i m ( P T ~ ) S + l l  = 1  
by 3.3. Now PTfl < 1 hence (PT~)N1 is monotonically decreasing to zero on /~ 
hence converges uniformly there. Thus if 0 < f < M then 

N + K  

IIP,,+Kf-P fll = X (PT.)"PT#f [[ 
n = h r +  1 

< M tlP,v+K 1--PNIIIN_,~ ~ 0. 

This and 3.5 prove (a) and (b) follows from 3"6. 

COROLLARY. There exists a probability measure It, on B, with ItP~ =It. 

Proof. This is a standard argument: The collection of all probability measures, 
on B is a bounded set of  functionals on C(/~) which is weakly closed and convex 
and invariant under P~  hence this set contains a fixed point. 

Following Harris [1] let us define 

oo 

(3.10. 2 = ]~ It(eTa) n. 
n----0 
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THEOREM. Assume 2.1. and 3.5. The measure 2 is ¢ finite, invariant under P 
and agrees with # on ~ (and thus not trivial). 

Proo£ Let us first show that 2 is ¢ finite Let 

-- {f: f > 0 and ( 2 , f )  = I f  d2 < oo}. H 

Let us show that pkfl ~ H for every k > 1. 
Now if k = 1 

( ~  p(PT,)', Pfl) = ( ~  I~(PT~)', 1 - ( F T , ) l )  = Qz, l )  = 1. 

Assume P~fl ~ H then 

< E t~(erJ',Pk+'fl> --~ < ~ I~(PT~)',PT~[Ptfl]> 

+ < :[: eTpEP  ]> 

< < E l~(eT,)'+',Pkfl) + M (  ]C iz(pT,)n, eTpl) 

where M = sup (/~fl) (y). 
The first term is finite by the induction hypothesis and the second term is 

M (~ /~(PT~)  n, Pfl) = M.  Thus 2 is a finite on 

o o  ~o 

[,.J {x:(pkfl)(x) > O} = U { x:Cpk18)(x) > O} 
k = l  k = l  

by 3.1 and by Lemma 2 2 is a finite on all of X.  
Now i f f  is supported by/~ then (PT~)'f = 0 n = 1 2, ... and ( 2 , f )  = Qz,f>.  
Finally 

2P = ~, I.t(PT3"P = ~., #(PT~)'PT~ + ~p(PT,,)nPTp 

= 2 - I z  + ~ p(PT~)nPTp 

but /~ -- ~ I.t(PT,,)"PT~ hence 2P = 2. 
REMARK Any compact set is covered by a finite union of sets of  the form 

{x: (Pqfl) (x) > 1/n} and thus 2 is finite on compact sets. 
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