EXISTENCE OF A σ FINITE INVARIANT MEASURE FOR A MARKOV PROCESS ON A LOCALLY COMPACT SPACE(¹)

BY

S. R. FOGUEL

ABSTRACT

A σ finite invariant measure is found, for a Markov process, on a locally compact space, which maps continuous functions to continuous functions.

1. Notation. Let X be a locally compact Hausdorff space. Let Σ denote its Baire sets. Let P be a Markov transition function on (X, Σ) i.e.;

1.1 For each $x \in X$, $P(x; \cdot)$ is a probability measure on Σ and for each and $A \in \Sigma$, $P(\cdot; A)$ is Σ measurable.

The transition function defines an operator on bounded measurable functions and on measures by

1.2
$$(Pf)(x) = \int f(y) P(x, dy).$$

1.3 $(\mu P)(A) = \int P(x, A) \mu(dx).$

Let us denote

1.4
$$(T_a f)(x) = \alpha(x)f(x).$$

1.5
$$T_A = T_\alpha$$
 where $\alpha = 1_A$.

2. The operator $T_A P T_A$. Let A be the complements of the compact set B. Throughout the paper we shall assume

Assumption 2.1. $(T_A P T_A)^n 1(x) \to 0_{n \to \infty}$ for every $x \in X$.

REMARK. Assumption 2.1. is used here instead of the recurrence condition of Harris [1].

LEMMA 1. Under Assumption 2.1.

$$(PT_A)^{n}1(x)_{n\to\infty}\to 0$$
 for every $x\in X$.

Received April 17, 1967, and in revised form October. 30, 1967.

⁽¹⁾ The research reported in this document has been sponsored by the Air Force Office of Scientific Research under Grant AF EOAR 66-18, through the European Office of Aerospace Research (OAR) United States Air Force.

Proof. $PT_A = T_A PT_A + T_B PT_A$, where $(T_B PT_A)^2 = (T_A PT_A)(T_B PT_A) = 0$. Hence $(PT_A)^{n_1} = (T_A PT_A)^{n_1} + (T_B P)(T_A PT_A)^{n_1}$ it is easy to see that if $(T_A PT_A)^{n_1}$ tends to zero so does $(T_B P)(T_A PT_A)^{n_1}$; note that $(T_A PT_A)^{n_{+1}}$ $= (T_A PT_A)^n [(T_A PT_A)^n] \leq (T_A PT_A)^{n_1}$.

LEMMA 2. Under Assumption 2.1.

$$\sum_{n=1}^{\infty} (P^n 1_B)(x) > 0 \text{ for every } x \in X.$$

Proof. Assume, to the contrary, that for some $x_0 (P^n 1_B)(x_0) = 0$ $n = 1, 2, \cdots$. Now $(PT_A)^n 1 = [P(1 - T_B)]^n 1$ which is equal to 1 plus terms of the form $[\prod P(T_B)^{\epsilon_i}]P 1_B$ where ϵ_i is either zero or one. Thus at x_0 each of these terms is smaller than $(P^k 1_B)(x_0) = 0$ where $k \leq n$. Thus $(PT_A)^n 1(x_0) = 1$ which violates Lemma 1.

REMARK. The conclusion of Lemma 2 is weaker than the assumption used by Nelson [2, Theorem 2.1.]. If Assumption 2.1. does not hold then $(T_APT_A)^n$ 1 is a monotonically decreasing sequence whose limit g satisfies $T_APT_Ag = g$. Conversely if $(T_APT_A)^n 1 \rightarrow 0$ then no such invariant function exists:

$$\left|g(x)\right| = \lim \left|(T_A P T_A)^n g(x)\right| \leq \sup \left|g(y)\right| \lim_{n \to \infty} (T_A P T_A)^n \mathbf{1}(x) = 0$$

Let X be the nonnegative integers and $P_{01} = 1 P_{n0} = 1 - \delta_n P_{nn+1} = \delta_n$ where $0 < \delta_n < 1$ and $\sum \delta_n < \infty$. (This example is given in [2, p. 674]).

Let $B = \{0\}$. Then

$$T_{A}PT_{A} = \begin{pmatrix} 0 & \delta_{1} & 0 & \cdots \\ 0 & 0 & \delta_{2} & \cdots \\ \vdots & \vdots & \end{pmatrix}$$

and $f_n = (\delta_1 \cdots \delta_n)^{-1}$ is an invariant function for $T_A P T_A$.

Thus Lemma 2 may be true and Assumption 2.1. false.

3. The construction of the invariant measure. Using the same notation as 1. Let β be a continuous function with:

3.1. $0 \leq \beta \leq 1$, $\beta = 1$ on B, $\beta = 0$ outside \tilde{B} where \tilde{B} is compact. Put $\alpha = 1 - \beta$ then α is continuous and

3.2.
$$0 \leq \alpha \leq 1 \quad \alpha \leq 1_A.$$

Thus $T_A f \ge 1_{\alpha} f$ for every positive function f and by Lemma 1.

3.3.
$$(PT_{\alpha})^{n} 1(x)_{n \to \infty} \to 0$$
 at every point x.

Following Harris [1] let us define

Vol. 6, 1968

3.4.
$$P_N = \sum_{n=0}^{N} (PT_{\alpha})^n PT_{\beta}$$

where P_N is an operator on bounded measurable functions defined on \tilde{B} .

Throughout the rest of this paper we shall assume

3.5. Assumption. If f is continuous so is Pf.

The operator P_N has the following properties

- 3.6. If f is continuous then so is $P_N f$.
- 3.7. If $f \ge 0$ then $P_N f \ge 0$.

3.8.
$$P_N 1_{\widetilde{B}} = \sum_{n=0}^{N} (PT_{\alpha})^n P\beta = \sum_{n=0}^{A} (PT_{\alpha})^n (1 - P\alpha)$$

= $P1 - (PT_{\alpha})^{N+1} 1 \leq 1$

Also if $f \ge 0$ then

3.9. $P_{N+1}f \ge P_Nf.$

LEMMA 3. Assume Assumptions 2.1 and 3.5. The sequence of operators P_N on $C(\tilde{B})$ converges uniformly. Let us denote its limit by P_{∞} . Then:

- (a) If f is continuous on \tilde{B} then so is $P_{\infty}f$.
- (b) If $f \ge 0$ then $P_{\infty}f \ge 0$.
- (c) $P_{\infty} 1 = 1$.

Proof. Let us prove (c) first: $P_{\infty}1 = \lim P_N 1 = 1 - \lim (PT_{\alpha})^{N+1} 1 = 1$ by 3.3. Now $PT_{\alpha}1 \leq 1$ hence $(PT_{\alpha})^N 1$ is monotonically decreasing to zero on \tilde{B} hence converges uniformly there. Thus if $0 \leq f \leq M$ then

$$\left\| P_{N+K}f - P_Nf \right\| = \left\| \sum_{n=N+1}^{N+K} (PT_{\alpha})^n PT_{\beta}f \right\|$$

$$\leq M \left\| P_{N+K} 1 - P_N 1 \right\|_{N \to \infty} \to 0$$

This and 3.5 prove (a) and (b) follows from 3.6.

COROLLARY. There exists a probability measure μ , on \tilde{B} , with $\mu P_{\infty} = \mu$.

Proof. This is a standard argument: The collection of all probability measures, on \tilde{B} is a bounded set of functionals on $C(\tilde{B})$ which is weakly closed and convex and invariant under P_{∞} hence this set contains a fixed point.

Following Harris [1] let us define

(3.10.
$$\lambda = \sum_{n=0}^{\infty} \mu(PT_{\alpha})^n.$$

THEOREM. Assume 2.1. and 3.5. The measure λ is σ finite, invariant under P and agrees with μ on \tilde{B} (and thus not trivial).

Proof. Let us first show that λ is σ finite Let

$$H = \{f: f \ge 0 \text{ and } \langle \lambda, f \rangle = \int f d\lambda < \infty \}.$$

Let us show that $P^k \beta \in H$ for every $k \ge 1$.

Now if k = 1

$$\langle \sum \mu(PT_{\alpha})^n, P\beta \rangle = \langle \sum \mu(PT_{\alpha})^n, 1 - (PT_{\alpha})1 \rangle = \langle \mu, 1 \rangle = 1.$$

Assume $P^k\beta \in H$ then

$$\langle \sum \mu(PT_{\alpha})^{n}, P^{k+1}\beta \rangle = \langle \sum \mu(PT_{\alpha})^{n}, PT_{\alpha}[P^{k}\beta] \rangle$$

$$+ \langle \sum \mu(PT_{\alpha})^{n}, PT_{\beta}[P^{k}\beta] \rangle$$

$$\leq \langle \sum \mu(PT_{\alpha})^{n+1}, P^{k}\beta \rangle + M \langle \sum \mu(PT_{\alpha})^{n}, PT_{\beta}1 \rangle$$

where $M = \sup(P^k\beta)(y)$.

The first term is finite by the induction hypothesis and the second term is $M \langle \sum \mu(PT_{\alpha})^n, P\beta \rangle = M$. Thus λ is σ finite on

$$\bigcup_{k=1}^{\infty} \{x : (P^k \beta)(x) > 0\} \supset \bigcup_{k=1}^{\infty} \{x : (P^k 1_B)(x) > 0\}$$

by 3.1 and by Lemma 2 λ is σ finite on all of X.

Now if f is supported by \tilde{B} then $(PT_a)^n f = 0$ n = 1 2, ... and $\langle \lambda, f \rangle = \langle \mu, f \rangle$. Finally

$$\lambda P = \sum \mu (PT_{\alpha})^{n} P = \sum \mu (PT_{\alpha})^{n} PT_{\alpha} + \sum \mu (PT_{\alpha})^{n} PT_{\beta}$$
$$= \lambda - \mu + \sum \mu (PT_{\alpha})^{n} PT_{\beta}$$

but $\mu = \sum \mu (PT_{\alpha})^n PT_{\beta}$ hence $\lambda P = \lambda$.

REMARK Any compact set is covered by a finite union of sets of the form $\{x: (P^{\alpha}\beta)(x) > 1/n\}$ and thus λ is finite on compact sets.

REFERENCES

1. T. E. HARRIS, The existence of stationary measures for certain Markov processes, Proceedings of Third Berkeley Symposium on Mathematical Statistics and Probability, II, Berkeley, 1956, 113-124.

2. E. NELSON, The adjoint Markov process, Duke Math. J., 25 (1958), 671-690.

THE HEBREW UNIVERSITY OF JERUSALEM